3.10.35 \(\int \frac {1}{x^2 \sqrt {1+x^4}} \, dx\) [935]

Optimal. Leaf size=117 \[ -\frac {\sqrt {1+x^4}}{x}+\frac {x \sqrt {1+x^4}}{1+x^2}-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} E\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{\sqrt {1+x^4}}+\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{2 \sqrt {1+x^4}} \]

[Out]

-(x^4+1)^(1/2)/x+x*(x^4+1)^(1/2)/(x^2+1)-(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arctan(x))*EllipticE(sin(2*a
rctan(x)),1/2*2^(1/2))*((x^4+1)/(x^2+1)^2)^(1/2)/(x^4+1)^(1/2)+1/2*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*ar
ctan(x))*EllipticF(sin(2*arctan(x)),1/2*2^(1/2))*((x^4+1)/(x^2+1)^2)^(1/2)/(x^4+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {331, 311, 226, 1210} \begin {gather*} \frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} F\left (2 \text {ArcTan}(x)\left |\frac {1}{2}\right .\right )}{2 \sqrt {x^4+1}}-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} E\left (2 \text {ArcTan}(x)\left |\frac {1}{2}\right .\right )}{\sqrt {x^4+1}}-\frac {\sqrt {x^4+1}}{x}+\frac {\sqrt {x^4+1} x}{x^2+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[1 + x^4]),x]

[Out]

-(Sqrt[1 + x^4]/x) + (x*Sqrt[1 + x^4])/(1 + x^2) - ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x
], 1/2])/Sqrt[1 + x^4] + ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/2])/(2*Sqrt[1 + x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \sqrt {1+x^4}} \, dx &=-\frac {\sqrt {1+x^4}}{x}+\int \frac {x^2}{\sqrt {1+x^4}} \, dx\\ &=-\frac {\sqrt {1+x^4}}{x}+\int \frac {1}{\sqrt {1+x^4}} \, dx-\int \frac {1-x^2}{\sqrt {1+x^4}} \, dx\\ &=-\frac {\sqrt {1+x^4}}{x}+\frac {x \sqrt {1+x^4}}{1+x^2}-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} E\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{\sqrt {1+x^4}}+\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^4}{\left (1+x^2\right )^2}} F\left (2 \tan ^{-1}(x)|\frac {1}{2}\right )}{2 \sqrt {1+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 20, normalized size = 0.17 \begin {gather*} -\frac {\, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-x^4\right )}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[1 + x^4]),x]

[Out]

-(Hypergeometric2F1[-1/4, 1/2, 3/4, -x^4]/x)

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.15, size = 95, normalized size = 0.81

method result size
meijerg \(-\frac {\hypergeom \left (\left [-\frac {1}{4}, \frac {1}{2}\right ], \left [\frac {3}{4}\right ], -x^{4}\right )}{x}\) \(17\)
default \(-\frac {\sqrt {x^{4}+1}}{x}+\frac {i \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \left (\EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )-\EllipticE \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}\) \(95\)
risch \(-\frac {\sqrt {x^{4}+1}}{x}+\frac {i \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \left (\EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )-\EllipticE \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}\) \(95\)
elliptic \(-\frac {\sqrt {x^{4}+1}}{x}+\frac {i \sqrt {-i x^{2}+1}\, \sqrt {i x^{2}+1}\, \left (\EllipticF \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )-\EllipticE \left (x \left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ), i\right )\right )}{\left (\frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right ) \sqrt {x^{4}+1}}\) \(95\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(x^4+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(x^4+1)^(1/2)/x+I/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*(EllipticF(x*(1/2
*2^(1/2)+1/2*I*2^(1/2)),I)-EllipticE(x*(1/2*2^(1/2)+1/2*I*2^(1/2)),I))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(x^4+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^4 + 1)*x^2), x)

________________________________________________________________________________________

Fricas [C] Result contains complex when optimal does not.
time = 0.08, size = 42, normalized size = 0.36 \begin {gather*} \frac {-i \, \sqrt {i} x E(\arcsin \left (\sqrt {i} x\right )\,|\,-1) + i \, \sqrt {i} x F(\arcsin \left (\sqrt {i} x\right )\,|\,-1) - \sqrt {x^{4} + 1}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(x^4+1)^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(I)*x*elliptic_e(arcsin(sqrt(I)*x), -1) + I*sqrt(I)*x*elliptic_f(arcsin(sqrt(I)*x), -1) - sqrt(x^4 + 1
))/x

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.33, size = 31, normalized size = 0.26 \begin {gather*} \frac {\Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{2} \\ \frac {3}{4} \end {matrix}\middle | {x^{4} e^{i \pi }} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(x**4+1)**(1/2),x)

[Out]

gamma(-1/4)*hyper((-1/4, 1/2), (3/4,), x**4*exp_polar(I*pi))/(4*x*gamma(3/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(x^4+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^4 + 1)*x^2), x)

________________________________________________________________________________________

Mupad [B]
time = 1.14, size = 15, normalized size = 0.13 \begin {gather*} -\frac {{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ -x^4\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(x^4 + 1)^(1/2)),x)

[Out]

-hypergeom([-1/4, 1/2], 3/4, -x^4)/x

________________________________________________________________________________________